Crypto-Determined
"It is my experience that proofs involving matrices can be shortened by 50% if one throws the matrices out." - Emil Artin ( by Anakin)
Challenge
def inputs():
print("[DET] First things first, gimme some numbers:")
M = [
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
]
try:
M[0][0] = p
M[0][2] = int(input("[DET] M[0][2] = "))
M[0][4] = int(input("[DET] M[0][4] = "))
M[1][1] = int(input("[DET] M[1][1] = "))
M[1][3] = int(input("[DET] M[1][3] = "))
M[2][0] = int(input("[DET] M[2][0] = "))
M[2][2] = int(input("[DET] M[2][2] = "))
M[2][4] = int(input("[DET] M[2][4] = "))
M[3][1] = q
M[3][3] = r
M[4][0] = int(input("[DET] M[4][0] = "))
M[4][2] = int(input("[DET] M[4][2] = "))
except:
return None
return M
def main():
print("[DET] Welcome")
M = inputs()
if M is None:
print("[DET] You tried something weird...")
return
res = fun(M)
print(f"[DET] Have fun: {res}")
It is similar to the previous question except instead of trace, they give us the determinant of the matrix with p and q values encoded
Let i1,i2,i3,i4,i5,i6,i7,i8,i9 be the inputs. Then the matrix is
We calculate the determinant under the symbolic ring to get a direct equation for the determinant
We can solve for q by setting (i2*i4*i6*i8) = 1 and setting the rest to 0
On solving for q, we can decrypt the flag
Last updated